nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.42 144-152
Precise design and analysis of a dynamic modulus experiment under different loading modes
Email: chl6218@tongji.edu.cn;
DOI: 10.16791/j.cnki.sjg.2025.09.018
摘要:

“铺面工程学”是一门综合性较强的课程,实验在课程教学中占据非常重要的地位。该文在原有动态模量实验基础上进行了拓展,针对不同加载工况选择不同的加载模式,并增加了数据的处理与分析环节。还对动态模量实验设计、数据处理进行了较为详细的介绍,并给出一个实际案例。通过该实验,学生可对科研过程有更深的体会。几批学生的实践与反馈结果证实,该实验课程效果良好。

Abstract:

[Objective] “Pavement engineering” is a comprehensive course where experiments play a vital role. To promote the progress of China's advancement of first-class undergraduate education, the course constantly explores innovative teaching approaches. Given the above considerations, this paper expands on the original dynamic modulus experiment, selecting different loading modes according to different loading conditions, and adds data analysis and processing. On the basis of the above practice, students can more deeply understand scientific research. [Methods] This paper first introduces that dynamic modulus tests require the selection of different loading modes on the basis of varying loading conditions, primarily including three modes: uniaxial compressive(UC), indirect tensile(IDT), and four-point bending(4 PB). The specific procedures and experimental parameter selections for dynamic modulus tests under these three loading modes are then elaborated. The tests involve five temperatures:-10, 4.4, 21.1, 37.8, and 54.4 ℃. At each temperature, six loading frequencies are applied—0.1, 0.5, 1, 5, 10, and 25 Hz—to capture stress-strain data across a wide temperature and frequency range. Taking the UC dynamic modulus test as an example, the detailed process of specimen preparation, experimental execution, and data processing and analysis is explained. Finally, a practical engineering case study is presented to illustrate the entire workflow of dynamic modulus testing, from material selection to data analysis. [Results] The results indicate that AC-13 mixtures with varying void ratios exhibit consistent trends in dynamic modulus: the modulus decreases significantly with rising temperature and increases with higher loading frequencies, reflecting the temperature-and frequency-dependent(viscoelastic) characteristics of asphalt mixtures. Similarly, the phase angle of different AC-13 mixtures follows the same patterns: at low and intermediate temperatures(-10 ℃, 4.4 ℃, and 21.1℃), the phase angle decreases with increasing loading frequency. At high temperatures(37.8 ℃), the phase angle initially rises and then declines with increasing frequency, with an inflection point at 1 Hz. Overall, the phase angle increases with temperature. In IDT dynamic modulus tests, mixtures with different void ratios show analogous phase angle behaviors: At 4.4 ℃ and 21.1 ℃, the phase angle decreases with higher frequencies. At 37.8 ℃, the phase angle first increases and then decreases, with inflection points at 1 or 5 Hz. For 4 PB dynamic modulus tests, the phase angle trends of the AC-13 mixtures align with those observed in UC and IDT tests: At 4.4 ℃ and 21.1 ℃, the phase angle decreases with rising frequency. At 37.8 ℃, the phase angle peaks and then declines, with inflection points at 1 or 5 Hz. The phase angle consistently increases with temperature across all tests. [Conclusions] The methods and results presented in this study support dynamic modulus testing and analysis under diverse loading conditions, advancing the field of pavement engineering. This framework also offers valuable guidance for students in designing experiments and interpreting results, enhancing both academic and practical applications in asphalt mixture performance evaluation. Dynamic modulus is also the basic input parameter of pavement mechanics analysis and structural design. Through dynamic modulus experiments, the complex characteristics of asphalt mixture modulus can be better understood. Therefore, the research results of this paper also contribute to the development and application of pavement materials.

References

[1]苑经伟.公路路面沥青混合料动态模量试验研究[J].交通世界, 2024(27):38–40.YUAN J W. Experimental study on dynamic modulus of asphalt mixture for highway pavement[J]. Transport World, 2024(27):38–40.(in Chinese)

[2]高岳峰,符东绪,成永宁,等.干法胶粉沥青大粒径沥青混合料动态模量试验研究[J].石油沥青, 2022, 36(1):15–19, 24.GAO Y F, FU D X, CHENG Y N, et al. Experimental study on dynamic modulus of large particle size asphalt mixture with dry process rubber powder asphalt[J]. Petroleum Asphalt, 2022,36(1):15–19, 24.(in Chinese)

[3]朱新春,李明亮,曹东伟,等.排水沥青混合料动态模量试验研究[J].上海公路, 2018(2):89–91, 6.ZHU X C, LI M L, CAO D W, et al. Experimental study on dynamic modulus of porous asphalt mixture[J]. Shanghai Highways, 2018,(2):89–91, 6.(in Chinese)

[4]苏杰,刘忠根.再生沥青混合料动态模量试验研究[J].北方建筑, 2022, 7(4):11–15.SU J, LIU Z G. Experimental study on dynamic modulus of recycled asphalt mixture[J]. Northern Architecture, 2022, 7(4):11–15.(in Chinese)

[5]郭荣鑫,刘兴姚,颜峰,等.钢渣沥青砂浆动态模量试验及其主曲线研究[J].硅酸盐通报, 2019, 38(1):205–210.GUO R X, LIU X Y, YAN F, et al. Dynamic modulus test and master curve of steel slag asphalt mortar[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1):205–210.(in Chinese)

[6]马莉骍,黄俊峰.基于动态模量试验的沥青混合料老化性能研究[J].公路工程, 2014, 39(3):317–321.MA L X, HUANG J F. Research on aging performance of asphalt mixture based on dynamic modulus test[J]. Highway Engineering, 2014, 39(3):317–321.(in Chinese)

[7]田中亚,杨胜丰,李力.基于沥青混合料动态模量试验的数学模型与移位因子分析[J].山东交通科技, 2020(2):6–8.TIAN Z Y, YANG S F, LI L. Mathematical model and shift factor analysis based on dynamic modulus test of asphalt mixture[J]. Shandong Jiaotong Keji, 2020(2):6–8.(in Chinese)

[8]王泽玉,吴玉.基于随机算法的沥青混合料动态模量仿真试验研究[J].交通科技, 2025(1):118–123.WANG Z Y, WU Y. Simulation test study on dynamic modulus of asphalt mixture based on random algorithm[J]. Transportation Science&Technology, 2025(1):118–123.(in Chinese)

[9]王素青.基于有限元的高模量沥青混凝土模量指标研究[J].山西交通科技, 2021(3):54–59.WANG S Q. Research on modulus index of high modulus asphalt concrete based on finite element method[J]. Shanxi Jiaotong Keji, 2021(3):54–59.(in Chinese)

[10]李岩涛,胡朋,王亚平,等.基于路面材料动态模量的沥青路面响应仿真分析[J].山东交通学院学报, 2017, 25(2):54–60.LI Y T, HU P, WANG Y P, et al. Simulation analysis of asphalt pavement response based on dynamic modulus of pavement materials[J]. Journal of Shandong Jiaotong University, 2017,25(2):54–60.(in Chinese)

[11]程怀磊,孙立军,郑健龙,等.沥青混合料动态压-拉双模量及其在路面响应分析中的应用[J].土木工程学报, 2022,55(3):105–116, 128.CHENG H L, SUN L J, ZHENG J L, et al. Dynamic compression-tension dual modulus of asphalt mixture and its application in pavement response analysis[J]. China Civil Engineering Journal, 2022, 55(3):105–116, 128.(in Chinese)

[12]袁淼,韩丁,李阳,等.沥青混合料动态模量试验的仿真和验证[J].合肥工业大学学报(自然科学版), 2022, 45(1):67–72, 80.YUAN M, HAN D, LI Y, et al. Simulation and verification of dynamic modulus test for asphalt mixture[J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(1):67–72, 80.(in Chinese)

[13]刘文道.沥青混合料间接拉伸与单轴压缩模量相关性研究[D].沈阳:沈阳建筑大学, 2022.LIU W D. Study on the correlation between indirect tensile and uniaxial compression modulus of asphalt mixture[D]. Shenyang Jianzhu University, 2022.(in Chinese)

[14]陈耀辉.单轴拉伸和四点弯曲加载模式下沥青混合料疲劳特征对比研究[D].西安:长安大学, 2023.CHEN Y H. Comparative study on fatigue characteristics of asphalt mixture under uniaxial tension and four-point bending loading modes[D]. Chang’an University, 2023.(in Chinese)

[15] AASHTO TP 63. Standard method of test for determining dynamic modulus of hot mix asphalt concrete mixtures[S].Washington D.C.:AASHTO, 2001.

[16]程怀磊,李斌,刘黎萍,等.移动轴载作用下路面沥青层动态响应模量主曲线研究[J].中国公路学报, 2020, 33(10):125–134.CHENG H L, LI B, LIU L P, et al. Research on master curve of dynamic response modulus of asphalt pavement layer under moving axle load[J]. China Journal of Highway and Transport,2020, 33(10):125–134.(in Chinese)

[17]吴荣东,孙武云,柏耘,等.基于单轴压缩试验的环氧沥青OGFC混合料动态模量研究[J].公路交通科技(应用技术版),2020, 16(2):89–91.WU R D, SUN W Y, BAI Y, et al. Study on dynamic modulus of epoxy asphalt OGFC mixture based on uniaxial compression test[J]. Journal of Highway and Transportation Research and Development(Application Technology Edition), 2020, 16(2):89–91.(in Chinese)

[18]刘涛,唐佑绵,范海琪,等.基于间接拉伸动态模量试验的沥青混合料泊松比研究[J].广东公路交通, 2018, 44(2):1–6.LIU T, TANG Y M, FAN H Q, et al. Study on poisson's ratio of asphalt mixture based on indirect tensile dynamic modulus test[J]. Guangdong Highway Communications, 2018, 44(2):1–6.(in Chinese)

[19] CHENG H L, LIU L P, SUN L J, et al. Comparative analysis of strain-pulse-based loading frequencies for three types of asphalt pavements via field tests with moving truck axle loading[J].Construction and Building Materials, 2020, 247:118519.

[20]交通部公路科学研究院.公路工程集料试验规程:JTG E42—2005[S].北京:人民交通出版社, 2005.Research Institute of Highway Ministry of Transport. Test code for aggregates in highway engineering JTG E42—2005[S].Beijing:People's Communications Press, 2005.(in Chinese)

[21]交通部公路科学研究院.公路工程沥青及沥青混合料试验规程:JTG E20—2011[S].北京:人民交通出版社, 2011.Research Institute of Highway Ministry of Transport. Test code for asphalt and asphalt mixture in highway engineering JTG E20—2011[S]. Beijing:People's Communications Press, 2011.(in Chinese)

[22]孙艳娜,孙大权,李立寒.混合料配合比设计实验课程设计[J].实验室科学, 2021, 24(2):185–188, 193.SUN Y N, SUN D Q, LI L H. Experimental course design for mix proportion design of asphalt mixtures[J]. Laboratory Science, 2021, 24(2):185–188, 193.(in Chinese)

[23]关宏信,周直霖,覃婉菊,等.半开级配SBS改性沥青混合料BK-7组成设计[J].长沙理工大学学报(自然科学版),2023, 20(6):91–99.GUAN H X, ZHOU Z L, QIN W J, et al. Composition design of semi-open graded SBS modified asphalt mixture BK-7[J].Journal of Changsha University of Science&Technology(Natural Science), 2023, 20(6):91–99.(in Chinese)

[24]徐峰,陈亚雄.多功能高模量改性沥青混合料级配参数优化研究[J].浙江交通职业技术学院学报, 2023, 24(4):19–23.XU F, CHEN Y X. Research on gradation parameter optimization of multi-functional high modulus modified asphalt mixture[J]. Journal of Zhejiang Institute of Communications,2023, 24(4):19–23.(in Chinese)

[25] CHENG H, LIU L, SUN L. Determination of layer modulus master curve for steel deck pavement using field-measured strain data[J]. Transportation Research Record, 2019, 2673:617–627.

[26] HONDROS G. The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian(indirect tensile)test with particular reference to concrete[J].Austrian Journal of Applied Science, 1959(10):243–264.

[27] KIM Y R, SEO Y, KING M, et al. Dynamic modulus testing of asphalt concrete in indirect tension mode, bituminous paving mixtures, transportation research record[J]. Journal of the Transportation Research Board, 2004(1891):163–173.

Basic Information:

DOI:10.16791/j.cnki.sjg.2025.09.018

China Classification Code:U41-4;G642

Citation Information:

[1]朱唐亮,程怀磊,薛晨阳.动态模量实验在不同加载工况下的精确化设计与分析[J].实验技术与管理,2025,42(09):144-152.DOI:10.16791/j.cnki.sjg.2025.09.018.

Fund Information:

国家自然科学基金项目(52578527,52108412)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search