| 58 | 0 | 7 |
| Downloads | Citas | Reads |
针对电网数字化转型下电力专用传感器的供能问题以及相关教学手段不足问题,提出基于能量流的变压器振动压电取能仿真与实验教学平台构建方案。设计了变压器振动电磁-机械振动耦合仿真与实验、串并联压电阵列力-电耦合仿真与实验、能量管理电路仿真与实验、储能电容充电实验等实验功能及实验案例,探讨了该仿真与实验平台在跨学科教学和交叉学科研究方面的用途。该平台为电气工程、智能电网信息工程等专业学生参与科研训练和工程实践提供了重要的实践平台,促进了问题式教学模式的教学方法创新,同时也为电力设备低功耗传感器供能问题研究提供了有力支撑。
Abstract:[Objective] To address critical energy supply challenges for power-specific sensors and pedagogical limitations exposed during power grid digitalization, this study presents a holistic simulation and experimental platform for piezoelectric vibration energy harvesting, targeting transformer vibrations. [Methods] Designed to bridge theoretical knowledge and practical engineering applications, the proposed platform comprehensively integrates four synergistic modules spanning the entire energy flow pathway.(1) The electromagnetic– mechanical vibration coupling module employs COMSOL Multiphysics for the finite element modeling of power transformer dynamics, simulating core vibrations governed by magnetostriction principles(where acceleration scales proportionally with voltage squared) and winding vibrations(where acceleration correlates with current squared), predicting dominant frequencies at 100 and 200 Hz. These results are experimentally validated using CT1010 LF piezoelectric accelerometers mounted magnetically on transformer surfaces, capturing realworld vibrations such as the measured 0.42 g acceleration amplitude at a 200-Hz frequency from a 240-kVA/220-kV SFSZ10-240000/220 transformer under operational conditions.(2) The force–electric coupling module focuses on series–parallel piezoelectric arrays utilizing Sm-doped lead magnesium niobate–lead titanate bimorph cantilevers. It incorporates detailed simulations to analyze resonance shifts when adjusting tungsten mass block positions along the cantilever axis and establishing Multisim-compatible equivalent circuit models parameterized through laser displacement testing. It shows a free-end vibration displacement Ud of 0.021 65 mm and derived sinusoidal current sources Ip = IM sin(ωt) with clamped capacitance Cp values of 27.32 nF. Experimental validation under 1g acceleration excitation demonstrates optimized configurations, such as nine parallel arrays delivering maximum power outputs of 2.341 mW at a load resistance of 150 kΩ.(3) The energy management module simulates, designs, and implements power conditioning circuits exemplified by the synchronous electric charge extraction topology. Multisim simulations guide printed circuit board layouts fabricated using Altium Designer to achieve efficient AC–DC conversion and voltage regulation.(4) The energy storage and delivery module evaluates charging–discharging cycles for capacitors powering sensors. It documents 16 daily operational cycles for a 5-V vibration monitoring sensor, consuming 0.6 V per measurement event with systematic charging time metrics quantifying energy autonomy performance. [Results] Extensive case studies centered on the SFSZ10 transformer validate platform efficacy: electromagnetic simulations predict vibration hotspots, whereas experimental measurements confirm spatial variations in surface acceleration. Meanwhile, piezoelectric array simulations reveal that parallel configurations boost current summation and power transfer to lower resistance loads, whereas experiments identify optimal 150 kΩ matching points. SECE circuit comparisons demonstrate enhanced efficiency over basic rectifiers. Moreover, sensor charging tests verify sustainable operation under realistic duty cycles. Pedagogically, this integrated framework enables problem-based learning where students execute vibration spectral analysis using Fourier transforms, design cantilever structures by tuning mass positions to match 100–300 Hz vibration spectra, construct electrical models from laser-measured displacement and voltage data, compare array topologies through output power curves, and evaluate circuit efficiency using capacitor charging rates. These cultivate competencies in multiphysics simulation, experimental instrumentation, and energy system optimization. For research, the platform's modular architecture facilitates parametric studies on piezoelectric material selection, array scalability, circuit topologies, and storage integration—directly advancing solutions for autonomous sensor networks in digitalized power equipment. Quantitative outcomes include achieving 4.354 mW simulated power at 21 kΩ for nine parallel piezoelectric patches versus 2.341 mW experimentally at 150 kΩ, identifying material and impedance matching challenges; transformer vibration mapping showing 71.43% of measurement points exhibiting 200-Hz center frequencies; and capacitor charging sequences enabling multicycle sensor operation without external power. [Conclusions] By unifying high-fidelity simulations with hands-on experiments across the electromagnetic, mechanical, electrical, and energy domains, this platform not only revolutionizes engineering education for electrical and smart grid disciplines but also establishes an extensible research testbed for developing self-powered systems critical to grid digitalization under China's dual carbon strategy. This effectively closes the gap between academic concepts and field-deployable energy harvesting technologies for next-generation power infrastructure.
[1]盛戈皞,钱勇,罗林根,等.面向新型电力系统的数字化电力设备关键技术及其发展趋势[J].高电压技术, 2023, 49(5):1765–1778.SHENG G H, QIAN Y, LUO L G, et al. Key technologies and development trends of digital power equipment for new type power system[J]. High Voltage Engineering, 2023, 49(5):1765–1778.(in Chinese)
[2]江秀臣,许永鹏,李曜丞,等.新型电力系统背景下的输变电数字化转型[J].高电压技术, 2022, 48(1):1–10.JIANG X C, XU Y P, LI Y C, et al. Digitalization transformation of power transmission and transformation under the background of new power system[J]. High Voltage Engineering,2022, 48(1):1–10.(in Chinese)
[3]江俊杰,胡军,马国明,等.数字化电力装备专用传感应用需求与发展趋势[J].高电压技术, 2024, 50(8):3271–3307.JIANG J J, HU J, MA G M, et al. Application requirements and development trend of special sensors in digital electrical equipment[J]. High Voltage Engineering, 2024, 50(8):3271–3307.(in Chinese)
[4]陈赦,胡东阳,汪沨,等.电网状态监测装置自取能技术综述[J].高电压技术, 2023, 49(5):2077–2089.CHEN S, HU D Y, WANG F, et al. Review on energyharvesting technology for power grid condition monitoring device[J]. High Voltage Engineering, 2023, 49(5):2077–2089.(in Chinese)
[5]熊兰,何友忠,宋道军,等.输变电线路在线监测设备供电电源的设计[J].高电压技术, 2010, 36(9):2252–2257.XIONG L, HE Y Z, SONG D J, et al. Design on power supply for the transmission line on-line monitoring equipment[J]. High Voltage Engineering, 2010, 36(9):2252–2257.(in Chinese)
[6]谢彦斌,蒋兴良,胡建林,等.典型架空输电线路分段绝缘地线取能研究[J].中国电机工程学报, 2018, 38(3):947–955.XIE Y B, JIANG X L, HU J L, et al. Study on power-tapping from segmented insulation ground wire of typical overhead transmission line[J]. Proceedings of the CSEE, 2018, 38(3):947–955.(in Chinese)
[7]舒胜文,俞若珺,张必震,等.基于Sm-PMN-PT和改进型DICH接口电路的压电取能功率提升方法[J].高电压技术,2024, 50(8):3448–3462.SHU S W, YU R J, ZHANG B Z, et al. Improvement method of piezoelectric energy harvesting power based on Sm-PMN-PT and improved-DICH interface circuit[J]. High Voltage Engineering,2024, 50(8):3448–3462.(in Chinese)
[8] SHU S W, YU R J, QIU H, et al. An efficient self-powered method for power transformers vibration monitoring sensors based on the Sm-doped-PMN-PT piezoelectric bimorph array[J].IEEE Sensors Journal, 2024, 24(16):26354–26368.
[9]汪张琛,熊庆,汲胜昌,等.基于压电材料的变压器振动能量收集装置研究[J].电力工程技术, 2021, 40(6):173–178.WANG Z C, XIONG Q, JI S C, et al. Vibration energy harvesting device for transformer based on piezoelectric material[J]. Electric Power Engineering Technology, 2021, 40(6):173–178.(in Chinese)
[10]吴晔盛,刘启,曹杰,等.收集振动能的摩擦纳米发电机设计与输出性能[J].物理学报, 2019, 68(19):19–26.WU Y C, LIU Q, CAO J, et al. Design and output performance of vibration energy harvesting triboelectric nanogenerator[J].Acta Physica Sinica, 2019, 68(19):19–26.(in Chinese)
[11]边义祥,杨成华.基于压电材料的振动能量回收技术现状综述[J].压电与声光, 2011, 33(4):612–622.BIAN Y X, YANG C H. A review of current research for energy harvesting based on vibration of piezoelectric materials[J].Piezoelectrics&Acoustooptics, 2011, 33(4):612–622.(in Chinese)
[12]陈航,郑雷,刘同亮,等.“双碳”背景下环境设计专业多学科交叉人才的培养[J].实验室研究与探索, 2022, 41(8):253–255, 277.CHEN H, ZHENG L, LIU T L, et al. Cultivation of multidisciplinary talents in environmental design with the goals of emission peak and carbon neutrality[J]. Research and Exploration in Laboratory, 2022, 41(8):253–255, 277.(in Chinese)
[13]熊宏齐.基于虚拟仿真的线上线下融合专业实验教学体系构建[J].实验技术与管理, 2022, 39(3):5–10, 25.XIONG H Q. Construction of online-merge-offline specialized experiment teaching system based on virtual simulation[J].Experimental Technology and Management, 2022, 39(3):5–10,25.(in Chinese)
[14]丁艳,李佳明,高铄涵,等.光伏系统MPPT算法仿真实验平台设计[J].实验技术与管理, 2021, 38(12):123–127.DING Y, LI J M, GAO S H, et al. Design of MPPT algorithm simulation experimental platform for photovoltaic system[J].Experimental Technology and Management, 2021, 38(12):123–127.(in Chinese)
[15]谢仕炜,张从容,张亚超.电力-交通融合系统均衡状态分析与实验仿真平台设计[J].实验室研究与探索, 2024, 43(9):41–48.XIE S W, ZHANG C R, ZHANG Y C. Equilibrium state analysis and simulation experiment platform design of powertransportation integration system[J]. Research and Exploration in Laboratory, 2024, 43(9):41–48.(in Chinese)
[16]张亚超,丁志龙,谢仕炜.能源-交通-信息融合系统韧性提升的实验平台构建[J].实验技术与管理, 2023, 40(3):7–13.ZHANG Y C, DING Z L, XIE S W. Construction of experimental platform for resilience enhancement of energytransport-information integrated systems[J]. Experimental Technology and Management, 2023, 40(3):7–13.(in Chinese)
[17]张亚超,丁志龙,谢仕炜.能源转型背景下配电网弹性提升的仿真教学研究[J].实验技术与管理, 2022, 39(9):140–145.ZHANG Y C, DING Z L, XIE S W. Research on simulation teaching on resilience enhancement of distribution networks in the context of energy transition[J]. Experimental Technology and Management, 2022, 39(9):140–145.(in Chinese)
Basic Information:
DOI:10.16791/j.cnki.sjg.2025.09.027
China Classification Code:G642.423;TM619-4
Citation Information:
[1]舒胜文,邱晗,俞若珺.面向电力专用传感的压电振动取能仿真与实验平台设计[J].实验技术与管理,2025,42(09):213-221.DOI:10.16791/j.cnki.sjg.2025.09.027.
Fund Information:
国家自然科学基金资助项目(52207150); 福州大学本科教改项目(20240013)