nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.42 232-239
Construction and implementation of the artificial intelligence-enabled digital logic experimental platform
Email:
DOI: 10.16791/j.cnki.sjg.2025.07.030
摘要:

为解决数字逻辑实验课程案例缺少人工智能与硬件结合新兴技术、实验内容缺乏前瞻性与综合性问题,该文设计实现了基于FPGA脉动阵列的YOLO神经网络推理平台,基于该平台软硬件实现过程,构建了一系列实验案例,并通过测试验证了平台的实用性。该平台可以覆盖计算机类本科生多门硬件课程专题实验、开放创新实验以及毕业设计,有助于培养学生将人工智能与硬件设计相结合的创新思想,以及灵活运用课程知识动手解决实际工程问题的能力。

Abstract:

[Objective] The digital logic experiment course, essential for computer and electrical engineering undergraduates, has long emphasized foundational hardware concepts like logic gates, combinational circuits, and sequential circuits. However, the omission of emerging technologies integrating artificial intelligence(AI) and hardware from course materials has resulted in experimental content that lacks foresight, innovation, and interdisciplinary depth. This gap limits students' ability to connect theoretical knowledge with cutting-edge industry practices, particularly in AI-driven hardware acceleration. To address this, we propose a systolic array platform using FPGAs to accelerate YOLO neural network inference. The platform modernizes the curriculum by embedding AI-hardware co-design principles, enhancing students' ability to tackle real-world engineering problems through hands-on experimentation. [Methods] The platform employs a co-design approach integrating hardware and software components. Hardware utilizes an FPGA-based systolic array to accelerate inference for the YOLO neural network(widely adopted for real-time object detection). The systolic array architecture is selected for its inherent parallelism and efficiency in matrix multiplication/addition operations fundamental to neural networks. Software implements control and data transmission interfaces using Verilog HDL, enabling communication between the host system and FPGA accelerator. The platform supports structured experimental cases covering serial communication, state machine design, and Verilog-based circuit implementation. These guide students through designing, synthesizing, and debugging hardware circuits while introducing model quantization, pruning, and distillation for hardware-aware neural network optimization. [Results] The platform was successfully implemented and tested, demonstrating practicality and effectiveness for enhancing the digital logic course. Students gain hands-on experience in hardware circuit design/optimization for AI applications, specifically enabling them to: 1) Deepen understanding of hardware concepts(e.g., adders, multipliers, systolic arrays) by implementing them in neural network acceleration contexts; 2) Engage with mainstream AI technologies(e.g., YOLO) and learn hardware-oriented model optimization; 3) Develop proficiency in Verilog HDL and EDA tools(circuit design, synthesis, place-and-route, timing analysis, on-board debugging). The platform's "one platform, multiple objectives" model supports diverse topic exploration within a unified framework. [Conclusions] This study bridges traditional digital logic education with modern AI-hardware integration. Embedding YOLO acceleration into FPGA experiments enriches the curriculum and cultivates students' interdisciplinary problem-solving skills. Key innovations include the systolic array's adaptive data reshaping mechanism and integrating industry-standard AXI protocols into pedagogical tools. Future work will extend the platform to distributed FPGA clusters for large-scale model training and develop modules for emerging technologies like neuromorphic computing. These efforts position the digital logic course as a cornerstone of AI-driven hardware education, equipping students with skills critical for evolving technological landscapes.

References

[1]马驰,巢明,陈景,等.基于多自由度创新实践的“数字逻辑实验”课程改革[J].实验技术与管理, 2021, 38(3):173–176.MA C, CHAO M, CHEN J, et al. Reform of the“Digital Logic Experiment” course based on multi-degree-of-freedom innovative practice[J]. Experimental Technology and Management, 2021,38(3):173–176.(in Chinese)

[2]王晓媛,吴志茹,杨柳,等.基于Knowm忆阻器的2线-9线译码器在FPGA中的设计与实现[J].实验技术与管理, 2022,39(2):66–72.WANG X Y, WU Z R, YANG L, et al. Design and implementation of a 2-to-9 decoder based on Knowm memristor in FPGA[J].Experimental Technology and Management, 2022, 39(2):66–72.(in Chinese)

[3]齐乐,常轶松,陈欲晓,等.基于SoC-FPGA的RISC-V处理器软硬件系统级平台[J].计算机研究与发展, 2023, 60(6):1204–1215.QI L, CHANG Y S, CHEN Y X, et al. A hardware-software system-level platform for RISC-V processor based on SoCFPGA[J]. Journal of Computer Research and Development,2023, 60(6):1204–1215.(in Chinese)

[4]唐维伟,钟胜,卢金仪,等.基于FPGA的Skynet网络结构优化及高时效实现[J].电子学报, 2023, 51(2):314–323.TANG W W, ZHONG S, LU J Y, et al. Optimization and highefficiency implementation of Skynet network structure based on FPGA[J]. Acta Electronica Sinica, 2023, 51(2):314–323.(in Chinese)

[5]秦国锋,丁志军,王力生,等.立足能力建设,持续推进实验贯通[J].实验技术与管理, 2020, 37(5):142–145, 162.QIN G F, DING Z J, WANG L S, et al. Focusing on capacity building and continuously promoting experimental integration[J].Experimental Technology and Management, 2020, 37(5):142–145, 162.(in Chinese)

[6]谭婧炜佳,魏晓辉.面向解决复杂工程问题能力培养的计算机系统结构课程教改探索[J].计算机教育, 2023,(3):145–148, 153.TAN J W J, WEI X H. Exploration of teaching reform in computer architecture course for cultivating the ability to solve complex engineering problems[J]. Computer Education, 2023,(3):145–148, 153.(in Chinese)

[7]刘洁怡,许辉,李翔,等.基于数字电路的线上实验教学模式探索[J].实验科学与技术, 2024, 22(3):80–86.LIU J Y, XU H, LI X, et al. Exploration of online experimental teaching mode based on digital circuits[J]. Experiment Science and Technology, 2024, 22(3):80–86.(in Chinese)

[8]魏继增,王建荣,李幼萌,等.面向系统能力的数字逻辑与数字系统课程实践教学改革[J].实验室研究与探索, 2022,41(10):179–183, 225.WEI J Z, WANG J R, LI Y M, et al. Practical teaching reform of digital logic and digital systems course for system capability cultivation[J]. Research and Exploration in Laboratory, 2022,41(10):179–183, 225.(in Chinese)

[9] JOUPPI N P, YOUNG C, PATIL N, et al. In-datacenter performance analysis of a tensor processing unit[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture(ISCA). Toronto, 2017.

[10]包振山,郭俊南,张文博,等. UltraAcc:基于FPGA流水架构的低功耗高性能CNN加速器定制设计[J].计算机学报,2023, 46(6):1139–1155.BAO Z S, GUO J N, ZHANG W B, et al. UltraAcc:Custom design of a low-power and high-performance CNN accelerator based on FPGA pipeline architecture[J]. Chinese Journal of Computers, 2023, 46(6):1139–1155.(in Chinese)

[11]画芊昊,李博,杜宸罡.基于FPGA的深度可分离卷积加速器研究[J].计算机测量与控制, 2024, 32(5):267–273.HUA Q H, LI B, DU C G. Research on depthwise separable convolution accelerator based on FPGA[J]. Computer Measurement&Control, 2024, 32(5):267–273.(in Chinese)

[12]穆宇栋,李文明,范志华,等.面向YOLO神经网络的数据流架构优化研究[J].计算机学报, 2025, 48(1):82–99.MU Y D, LI W M, FAN Z H, et al. Research on dataflow architecture optimization for YOLO neural network[J]. Chinese Journal of Computers, 2025, 48(1):82–99.(in Chinese)

[13]郝晋渊,张家明,张少康,等.基于改进YOLO的无人机入侵检测方法[J].电子测量与仪器学报, 2024, 38(7):143–151.HAO J Y, ZHANG J M, ZHANG S K, et al. UAV intrusion detection method based on improved YOLO[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(7):143–151.(in Chinese)

[14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:Unified, real-time object detection[C]//Proceedings of the2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, 2016.

[15]王麟阁,蒋宝军,潘铁军.基于层级注意力增进网络的多尺寸遮挡人脸检测[J].数据采集与处理, 2022, 37(1):73–81.WANG L G, JIANG B J, PAN T J. Multi-scale occluded face detection based on hierarchical attention enhancement network[J].Journal of Data Acquisition and Processing, 2022, 37(1):73–81.(in Chinese)

[16] GOOGLE. Vision Transformer(ViT)[EB/OL].(2024-08-30)[2024-10-28]. https://github.com/kentaroy47/vision-transformerscifar10.

Basic Information:

DOI:10.16791/j.cnki.sjg.2025.07.030

China Classification Code:TN79-4;TP18

Citation Information:

[1]王今雨,高海峰,安健等.人工智能赋能的数字逻辑实验平台构建与实现[J].实验技术与管理,2025,42(07):232-239.DOI:10.16791/j.cnki.sjg.2025.07.030.

Fund Information:

2024年西安交通大学本科教学改革研究项目(2413Z); 2024年度教育部-华为“智能基座”2.0课程建设项目(24ZNJZ014); 全国高等院校计算机基础教育研究会课题(QG/2024/CBZZ1101-03197)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search