nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.42 17-25
Modal parameter identification in shaking table tests using stochastic subspace method: Taking the scale model of a super high-rise building as an example
Email: lijianying@cabrtech.com;
DOI: 10.16791/j.cnki.sjg.2025.07.003
摘要:

白噪声激励是振动台试验获取模态参数常用的识别方法,但其长时间激励可能对主频较低(如缩尺超高层)的模型造成轻微损伤,间接影响后续地震波工况抗震性能的计算。针对这一问题,该文在振动台试验的地震波工况中,基于随机子空间法识别了模型的模态参数,并与对应震级后的白噪声工况结果进行对比分析。试验现象及数据分析结果表明,在7度小震、中震及大震的地震波工况下,随机子空间法能够稳定、有效识别缩尺超高层建筑结构模型的模态参数,为同类模型振动台试验的模态参数识别研究提供了方法借鉴。

Abstract:

[Objective] Owing to their extreme height, extended fundamental frequencies, and complex mode shapes, supertall buildings have consistently posed challenges in seismic performance assessments, especially in regions experiencing high seismicity. As a widely adopted experimental approach, shaking table tests provide critical insights into the dynamic response and failure mechanisms of such structures under earthquake loading. A key step in such tests involves the identification of structural modal parameters, which traditionally relies on white noise excitation due to its broadband, uniformly distributed frequency content, and technical maturity. However, for the scaled models of supertall structures, which are typically characterized by reduced stiffness and low natural frequencies, long-duration white noise excitation can induce cumulative microdamage. Such subtle yet potentially irreversible changes, such as local cracking or stiffness degradation, may adversely influence the structural response under subsequent seismic excitations, thereby compromising the accuracy of performance evaluation. [Methods] This study investigates the feasibility of using a stochastic subspace identification(SSI-Dat) method for extracting the modal parameters of a scaled supertall building model directly from seismic response data, thereby avoiding potential model degradation associated with traditional white noise excitation. A series of shaking table tests are conducted under three levels of the seismic input(e.g., minor, moderate, and major earthquakes), corresponding to a seismic fortification intensity of 7. The method utilizes measured acceleration time histories to construct a system observation matrix from which natural frequencies, damping ratios, and dominant mode shapes are extracted via subspace decomposition. To evaluate the reliability and accuracy of the SSI-Dat method, the identified modal parameters are compared with those obtained from white noise excitation using the frequency response function(FRF) method under identical test conditions. [Results] To validate the accuracy and reliability of the SSI-Dat method, the identified modal parameters are compared with those obtained through conventional white noise excitation using the FRF method after each seismic event. Results show that, under minor seismic excitation, the SSI-Dat method yields modal parameters that noticeably deviate from those derived via the white noise approach, likely due to insufficient energy input and limited excitation in high modes. Meanwhile, under moderate and major earthquake inputs, the identified modal parameters, especially fundamental frequencies and dominant mode shapes, exhibit good agreement with the white-noise-based results. This indicates that, as input energy increases, the dynamic response of the structure becomes richer in the modal content, thereby enhancing the effectiveness of subspace-based identification techniques. Throughout the tests, the structure mainly exhibits horizontal motion with minimal torsion. Post-test modal shifts indicate damage accumulation, especially under strong quakes. Despite local stiffness degradation and cracking, the model remains globally intact, retaining load-bearing capacity. This reflects the realistic seismic performance of the supertall building and validates the scaled model's structural fidelity. [Conclusions] This study demonstrates the feasibility and reliability of using the SSI-Dat method to identify the modal parameters of scaled supertall building models under seismic excitation. Compared to the conventional white-noise-based approach, this method avoids risks associated with prolonged artificial excitation and offers a more realistic representation of the structural dynamic characteristics. These findings provide a valuable methodological reference for future shaking table tests involving high-rise structures and contribute to the advancement of nonintrusive modal identification techniques in seismic tests.

References

[1]中国建筑科学研究院.高层建筑混凝土结构技术规程:JGJ3—2010[S].北京:中国建筑工业出版社, 2010.China Academy of Building Research. Technical specification for concrete structures of tall building:JGJ3—2010[S]. Beijing:China Architecture&Building Press, 2010.(in Chinese)

[2]中国建筑科学研究院.建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社, 2010.China Academy of Building Research. Code for seismic design of buildings:GB 50011—2010[S]. Beijing:China Architecture&Building Press, 2010.(in Chinese)

[3]王翠坤,陈才华,崔明哲,等.我国典型超高层建筑的抗震韧性评价研究[J].建筑结构学报, 2025,46(5):1–14, 43.WANG C K, CHEN C H, CUI M Z, et al. Research on seismic resilience assessment of typical super-high-rise buildings in China[J]. Journal of Building Structures, 2025,46(5):1–14, 43.(in Chinese)

[4]徐培福,陈才华,邱盛源.高层建筑结构基本自振周期合理范围研究[J].建筑结构学报, 2024, 45(6):16–24.XU P F, CHEN C H, QIU S Y. Study on reasonable range of fundamental natural period of vibration of high-rise buildings[J]. Journal of Building Structures, 2024, 45(6):16–24.(in Chinese)

[5]陈才华,王翠坤,张宏,等.振动台试验对高层建筑结构设计的启示[J].建筑结构学报, 2020, 41(7):1–14.CHEN C H, WANG C K, ZHANG H, et al. Edification of shaking table test on structure design of high-rise buildings[J].Journal of Building Structures, 2020, 41(7):1–14.(in Chinese)

[6]陈才华,张庆林,李建赢,等.成都中海天府新区超高层项目模型振动台试验研究[J].建筑结构, 2024, 54(21):11–16.CHEN C H, ZHANG Q L, LI J Y, et al. Shaking table test study on super high-rise project model of Chengdu Zhonghai Tianfu New District[J]. Building Structure, 2024, 54(21):11–16.(in Chinese)

[7]田春雨,张宏,肖从真,等.上海中心大厦模型振动台试验研究[J].建筑结构, 2014, 41(11):47–52.TIAN C Y, ZHANG H, XIAO C Z, et al. Experimental research on shaking table test of Shanghai Center Tower[J]. Building Structure, 2014, 41(11):47–52.(in Chinese)

[8]陈才华,张宏,董皓,等.采用黏滞阻尼伸臂桁架的超高层结构模型振动台试验研究[J].土木工程学报, 2023, 56(3):9–21.CHEN C H, ZHANG H, DONG H, et al. Shaking table test of super high-rise structure with viscous damping outrigger truss[J]. China Civil Engineering Journal, 2023, 56(3):9–21.(in Chinese)

[9]陈灏恺,郝玮,储德文,等.济南绿地山东国际金融中心设加强层和斜墙的框架-核心筒结构振动台试验研究[J].建筑科学, 2024, 40(7):93–102.CHEN H K, HAO W, CHU D W, et al. Shaking table test research on the frame-corewall structure with strengthened storeys and sloping core for Jinan Greenland Shandong IFC[J].Building Science, 2024, 40(7):93–102.(in Chinese)

[10]李文品,刘畅,吕梦涵,等.南京金融城二期塔楼模型振动台试验设计[J].工程抗震与加固改造, 2019, 41(5):113–117.LI W P, LIU C, LYU M H, et al. Design of shaking table test on the second phase tower of Nanjing Financial City[J]. Earthquake Resistant Engineering and Retrofitting, 2019, 41(5):113–117.(in Chinese)

[11]贺军,罗清宇,李建赢,等.成都绿地T1塔楼模型振动台试验研究[J].工程抗震与加固改造, 2020, 42(6):123–129.HE J, LUO Q Y, LI J Y, et al. Shaking table test study on integral model structure of the T1 tower of Chengdu Greenland[J]. Earthquake Resistant Engineering and Retrofitting, 2020,42(6):123–129.(in Chinese)

[12]罗清宇,贺军,李建赢,等.天津周大福金融中心主塔楼模型振动台试验研究[J].建筑科学, 2021, 37(3):52–57.LUO Q Y, HE J, LI J Y, et al. Shaking table test study on the main tower model of Tianjin CFT Financial Center[J]. Building Science, 2021, 37(3):52–57.(in Chinese)

[13]罗清宇,孟庆骞,陈杰,等.南京绿地金茂国际金融中心结构模型振动台试验研究[J].建筑结构学报, 2025, 46(5):32–43.LUO Q Y, MENG Q Q, CHEN J, et al. Shaking table test on structural model of Nanjing Greenland Jinmao International Financial Center[J]. Journal of Building Structures, 2025, 46(5):32–43.(in Chinese)

[14]薛红京,束伟农,陆新征,等.某高度522 m超高层结构振动台试验与理论分析研究[J].建筑结构学报, 2023, 44(4):63–73.XUE H J, SHU W N, LU X Z, et al. Shaking table test and theoretical analysis on a 522 m super high-rise structure[J].Journal of Building Structures, 2023, 44(4):63–73.(in Chinese)

[15]柯小波,汪大洋,周云,等.地铁上盖超高层结构竖向振动台模型试验:不同振动控制方案影响研究[J].建筑结构,2022, 52(5):9–14, 35.KE X B, WANG D Y, ZHOU Y, et al. Study on vertical shaking table model test of super high-rise structure over subway:The influence of different vibration control schemes[J]. Building Structure, 2022, 52(5):9–14, 35.(in Chinese)

[16]李建赢,肖从真,贺军,等.丽泽SOHO结构模型振动台试验研究[J].建筑科学, 2022, 38(1):77–84.LI J Y, XIAO C Z, HE J, et al. Shaking table test study of the Lize SOHO structural model[J]. Building Science, 2022, 38(1):77–84.(in Chinese)

[17]刘宇飞,辛克贵,樊健生,等.环境激励下结构模态参数识别方法综述[J].工程力学, 2014, 31(4):46–53.LIU Y F, XIN K G, FAN J S, et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics, 2014, 31(4):46–53.(in Chinese)

[18]孟金伟.工作模态分析技术和系统研究[D].北京:华北电力大学(北京), 2022.MENG J W. Research on operational modal analysis technology and systems[D]. Beijing:North China Electric Power University(Beijing), 2022.(in Chinese)

[19]夏祥麟.环境激励模态分析方法的比较[D].长沙:中南大学, 2013.XIA X L. Comparison of modal analysis methods under ambient excitation[D]. Changsha:Central South University, 2013.(in Chinese)

[20]尤孙锋.基于环境激励的桥梁振动特征和损伤识别方法[D].北京:北京交通大学, 2023.YOU S F. Vibration characteristics and damage identification methods of bridges based on ambient excitation[D]. Beijing:Beijing Jiaotong University, 2023.(in Chinese)

Basic Information:

DOI:10.16791/j.cnki.sjg.2025.07.003

China Classification Code:TU973.212

Citation Information:

[1]张国伟,李建赢,张宏等.基于随机子空间法的振动台试验模态参数识别——以超高层建筑缩尺模型为例[J].实验技术与管理,2025,42(07):17-25.DOI:10.16791/j.cnki.sjg.2025.07.003.

Fund Information:

首都科技条件平台2023年度北京建筑大学绩效考核后补助实施项目阶段性成果(Z24006)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search